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Extremely rapid up-and-down motions of island arc
crust during arc-continent collision
Larry Syu-Heng Lai 1✉, Rebecca J. Dorsey1, Chorng-Shern Horng2, Wen-Rong Chi3,4, Kai-Shuan Shea5 &

Jiun-Yee Yen6

Mountain building and the rock cycle often involve large vertical crustal motions, but their

rates and timescales in unmetamorphosed rocks remain poorly understood. We utilize high-

resolution magneto-biostratigraphy and backstripping analysis of marine deposits in an active

arc-continent suture zone of eastern Taiwan to document short cycles of vertical crustal

oscillations. A basal unconformity formed on Miocene volcanic arc crust in an uplifting

forebulge starting ~6Ma, followed by rapid foredeep subsidence at 2.3–3.2 mm yr−1

(~3.4–0.5Ma) in response to oceanward-migrating flexural wave. Since ~0.8–0.5Ma, arc

crust has undergone extremely rapid (~9.0–14.4 mm yr−1) uplift to form modern Coastal

Range during transpressional strain. The northern sector may have recently entered another

phase of subsidence related to a subduction polarity reversal. These transient vertical crustal

motions are under-detected by thermochronologic methods, but are likely to be characteristic

of continental growth by arc accretion over geologic timescales.
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Vertical crustal motions are fundamental to the creation of
topography, development of sedimentary basins, and the
rock cycle1,2. Rapid vertical-displacement rates (mm year−1)

are often driven by tectonic processes such as crustal thickening in
Tibet3 and Taiwan4–6, strike-slip deformation along the San
Andreas fault7,8, lithospheric thinning in Central Anatolia9 and
D’Entrecasteaux island of Papua New Guinea10, and deflections due
to changes in surface or subsurface mass loads in Hawaii11 and
Antarctica12. Mass redistribution by erosion and sedimentation
amplifies vertical crustal motions13 and is important for under-
standing interactions between tectonic and surface processes
involved in mountain building and continental growth14. Among
these settings, extreme rates (>10mm year−1) of long-term
(>105–107 years) rock uplift are seldom detected15. Many studies
rely on thermochronology16 and petrology-geochemistry17 to assess
long-term vertical movements of crustal materials, but these
methods are limited by the requirement of suitable minerals, geo-
thermal gradient, temperature, and duration needed to thermally
reset thermochronometers. Assumptions of ancient topography and
thermal structure are often essential for use of thermochronologic
methods to estimate long-term rock uplift18, but it is difficult to
constrain these quantities in rapidly growing orogens constructed of
unmetamorphosed rocks. Thus, the rates, timescales, and structural
controls on vertical motions of shallow crust in active mountain
belts remain poorly understood.Q1Q1 �Q2�Q2�Q3�Q3�Q4�Q4�Q5�Q5

Stratigraphic study of inverted syn-orogenic sedimentary
basins provides a powerful tool with which to document rapid
subsidence and uplift of unmetamorphosed near-surface rocks in
zones of mountain building at tectonically active plate margins2.
Integrated paleomagnetic and biostratigraphic analysis can yield
extremely high resolution [e.g., ± 5–20 thousand years (kyr)] for
dating stratigraphic intervals7, and thus, remarkably high-fidelity
estimates for rates of vertical crustal motions and tectonic pro-
cesses. We applied this technique to investigate stratigraphic
records of the Coastal Range in eastern Taiwan, which reveal a
history of extremely rapid vertical crustal oscillations during
accretion of volcanic-arc crust to a continent.

The island of Taiwan has emerged since late Miocene time
through active collision between the Luzon island arc on the
Philippine Sea plate and the Chinese continental margin of the
Eurasian plate19 (Fig. 1). Rapid (~82 mm year−1) oblique
convergence20 between the two plates induces rapid exhumation
and denudation21, and some studies infer that collision has
propagated southward through time22–24. Other studies of the
metamorphic core (Central Range) and western foreland basin
suggest that collision was geologically simultaneous from north
to south, with pulses of accelerated exhumation from ~0.1 to
2–4 mm year−1 at 2.0–1.5 million years ago (Ma) and then to
4–8 mm year−1 at ~0.5 Ma25,26. These accelerations correspond
to tectonic reorganizations of the overriding Philippine Sea
plate27,28 that drive exhumation of high-pressure metamorphosed
Miocene arc crust-bearing mélange (Yuli Belt) from >35 km
crustal depth5,29–32 and rapid Quaternary emergence of the
unmetamorphosed arc crust in the Coastal Range4.

The Coastal Range contains a thick succession of Plio-
Pleistocene orogen-derived marine flysch, conglomerate (Fan-
shuliao and Paliwan formations), and olistostromes (Lichi Mél-
ange) that rest unconformably on Miocene volcanic arc basement
(Tuluanshan Formation, ca. 15–6Ma) (Fig. 2)33,34. The basal
unconformity (ca. 6–4Ma) is a broad erosive surface dis-
continuously capped by thin shallow-marine limestone (Kangkou
Limestone, 5.6–3.5 Ma) and limestone-clast-bearing epiclastic
deposits (Biehchi Epiclastic Unit, 5–3.5 Ma) that are directly
overlain by uncemented deep-water flysch34,35. These relations
record slow uplift, erosion, and intermittent sedimentation on arc
basement near sea level, followed by rapid subsidence that created

accommodation space for thick basin-filling sediment6,33. Basin
inversion and uplift must have occurred in the last roughly 1
million years based on observation of the tilted youngest marine
flysch and creation of modern Coastal Range topography4. Yet,
the timing and rates of these processes remain unclear. Ther-
mochronology and petrological methods are not suitable for
solving this problem because of the short duration of burial and
very low paleo-geothermal gradient revealed by clay mineralogy
(~14 °C km−1)36 and no post-depositional resetting of fission-
track detrital thermochronometers37. Early studies used calcar-
eous nannoplankton data38,39 and simplified lithostratigraphic
columns to derive a range of subsidence rates (0.8–5 mm year−1)
and minimum uplift rate (5.9–7.5 mm year−1) with unknown
spatial variability4,6. Many of these studies are now outdated and
pre-date recent advances in paleomagnetism and microfossil
studies34,40–43.

To document the timing, magnitude, and rates of vertical
crustal motions in the Coastal Range of eastern Taiwan, we
compiled geologic and magneto-biostratigraphic data to date and
accurately reconstruct two composite stratigraphic columns in the
northern and southern Coastal Range (Figs. 1, 2). This includes
our published data from the southern Coastal Range34 (Supple-
mentary Fig. 1) and new detailed geologic mapping, paleomag-
netic measurements, and microfossil identifications of planktonic
foraminifera and calcareous nannoplankton in the northern
Coastal Range (Supplementary Figs. 2–6; Supplementary
Data 1–2). The foraminifera data provide improved paleobathy-
metry estimates (Supplementary Fig. 7, Supplementary Data 3),
and compiled magneto-biostratigraphy constrains depositional
age (Fig. 3a). Dense sampling of microfossils and paleomagnetic
sites yields high temporal resolution (~1–15 kyr) and high
accuracy (2–43 kyr) of age controls that surpass other geologic
dating methods (Supplementary Data 4). Because the youngest
inverted sediment is consolidated and lithified, we have to
account for deposits that accumulated above the top of our
measured sections and subsequently were removed by erosion.
Porosity-effective stress of sandstone and vitrinite reflectance data
indicate that ca. 0.45–1.95 km of strata was eroded off the
youngest deposits preserved in our measured sections44. Due to
uncertain variability of compaction history and geothermal
structure, we used a conservative thickness of 0.5–1.0 km for
eroded sediments to reconstruct the deepest subsidence prior to
onset of structural inversion (Fig. 3a).

Using high-fidelity constraints on stratigraphy and paleo-
bathymetry, updated eustatic sea level curve (Supplementary
Fig. 7), and porosity-depth functions for relevant sediment types
(Supplementary Fig. 8), we conducted a modern 1-D back-
stripping analysis45 to progressively remove decompacted sedi-
ment and correct paleo-water depth along two composite
sections. This allowed us to reconstruct the history of subsidence
and uplift of arc basement in the north and south (Fig. 3b, c). See
details in the “Methods” section.

Results and discussion
Subsidence-uplift histories of the Taiwan coastal range. Our
results reveal that >5.48–6.51 km of preserved orogen-derived
sediment accumulated between ~3.39 and 0.77Ma, with a minor
increase in sedimentation rate at ~2.0 Ma (Fig. 3a). Volcanic-arc
basement subsided to depths of 6.53–7.78 km below modern sea
level at rates of 2.26 mm year−1 in the north and 3.24 mm year−1

in the south, with tectonic forces and sediment loads making
subequal contributions to the total subsidence (Fig. 3b, c). The
age of youngest, now-eroded sediment is estimated to be
~0.61–0.50 Ma, providing a reasonable age estimate for the end of
subsidence and onset of structural inversion (Fig. 3a). Since the
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Fig. 1 The Coastal Range of eastern Taiwan. a Regional tectonic configuration5,28 (inset), simplified geological map of the Coastal Range34 and analyzed
stratigraphic sections (blue boxes), including Hsiukuluan river (HKL), Wulou river (WL), Fungfu (FF), and Fungpin (FP) sections in the north, and Bieh river
(BC), Madagida river (MDJ), and Sanshian river (SSS) sections in the south. b Millennial rates of marine terrace uplift and river incision, compiled by Lai
et al.99 c Geodetic rates of vertical deformation measured during 2000-200849. Negative values mean subsidence.
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folded basal unconformity and underlying volcanic basement
rocks are exposed well above sea level, the difference between
present-day heights of antiformal peaks and the reconstructed
depth of arc basement at the end of deposition (0.82–0.77Ma for
the youngest preserved sediment; 0.61–0.50Ma at the top of
eroded sediment) provide a conservative estimate for the amount
of vertical displacement during basin inversion. To exhume the
volcanic-arc basement to present elevations of the Coastal Range
(0–1.33 km in the north, 0–1.68 km in the south) requires
extremely rapid rock uplift rates of at least 8.89–14.39 mm year−1

in the north and 10.43–14.24 mm year−1 in the south (Fig. 3b, c;
Supplementary Data 4).

The minor increase in sedimentation rate at ~2.0Ma and onset
of basin inversion at ~0.8–0.5Ma are coeval with proposed episodes
of accelerated rock exhumation in the metamorphic Central Range

to the west26 (Figs. 3a, 4a). Post-0.5Ma uplift rates of ca.
9–14mm year−1 represent the lower bound of long-term average
exhumation rates in the Coastal Range. These rates are intermediate
between spatially variable millennial uplift rates measured in
coastal marine terraces (2.3–11.8 mm year−1)46,47 and fluvial
incision rates (15.1–27.3 mm year−1) measured near the western
major oblique thrust fault (Longitudinal Valley fault)48 (Fig. 1b).
Notably, millennial uplift rates in the northern Coastal Range
(2.3–4.7 mm year−1)46,47 are considerably slower than our calcu-
lated long-term exhumation rates (~9–14mm year−1), and geodetic
data49 reveal subsidence at rates locally up to ~23.5mmyear−1 in
the north (Fig. 1b, c). This implies that the northern part of inverted
arc crust may have entered a new subsidence stage very recently.

Taken together, the stratigraphic record in the Coastal Range
reveals two short cycles of up-and-down crustal motions (Fig. 3b, c).
Coeval histories of uplift and subsidence in the north and south
support an interpretation of simultaneous crustal dynamics along the
collisional suture25,26,28, in contrast to southward-propagating
growth of the Taiwan orogen inferred in some models22–24. These
findings indicate the need for a revised tectonic interpretation to
explain the observed rapid vertical oscillations of arc crust in this
active arc-continent suture zone.

Drivers of rapid crustal oscillations during oceanic arc accre-
tion. We infer that the first cycle of uplift (~6–3.4 Ma) and
subsidence (~3.4–0.5 Ma) of volcanic basement was driven by
early flexure and loading of accreting Luzon arc crust. This
interpretation is supported by recent results showing that Plio-
Pleistocene sediments (Lichi Mélange, Fanshuliao and Paliwan
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formations) formed on – and were derived from – an east-
dipping submarine paleoslope at the steep western margin of the
basin34,50. These sediments onlap the westward-inclined basal
unconformity on top of Miocene arc basement (Tuluanshan
Formation) and display lateral facies changes that record east-
ward progradation of coarse deposits into the basin34. These
observations are best explained by basinward migration of the
depocenter in response to eastward migration of a thrust-
bounded submarine slope at the retrowedge orogenic front
(Fig. 4a). Thus, the first stage of vertical crustal oscillation in the
Coastal Range (slow uplift) is interpreted as a signal of forebulge
uplift. This stage was followed by subsidence in an evolving ret-
rowedge foredeep basin driven by eastward migration of a flexural
wave6,33. These processes took place during development of
the prowedge foreland basin in western Taiwan starting
~6.5–5Ma25,51.

The absence of transgressive deposits at the basal unconformity
between shallow-marine limestone (5.6–3.5 Ma) and overlying
deep-marine flysch (~3.4–3.1 Ma) requires a sudden increase in
water depth at ~3.5 Ma (Fig. 3b, c). This abrupt subsidence likely
resulted from local extensional faulting52,53 in the upper dilating
crust of a migrating flexural forebulge54, and may be in part
related to an increase in orogenic load on the Philippine Sea plate
due to accelerated topographic growth in the retrowedge at
3.2 ± 0.6 Ma55. Lithospheric bending of the Philippine Sea plate
induced by northward subduction at the Ryukyu trench56 may
have also influenced vertical displacements in the accreting arc
crust. However, this hypothesis predicts southward migration
(relative to the Coastal Range) of vertical-displacement signals,
but the observed cycles of uplift and subsidence occurred
simultaneously in northern and southern Coastal Range transects
(Fig. 3b, c). Therefore, we suggest that northward subduction at
the Ryukyu-trench exerted little or no influence on vertical crustal
motions during ~6–0.5 Ma basin evolution.

Post-0.5Ma extremely rapid uplift and basin inversion created
the modern topography of the Coastal Range in a small doubly-
vergent structural wedge during an abrupt change to wrench-style
transpressional deformation34,57 (Fig. 4b, c). While rapid vertical
displacements are observed in other oblique-convergent settings7,8,
it is unusual to document large-scale exhumation at rates
>10mm year−1 driven solely by upper-crustal deformation.
Isostatic adjustments to changes in lithospheric structure provide
a mechanism that can explain this behavior58. A tectonic load on
the Philippine Sea plate may have been suddenly released when
forearc lithosphere was broken and subducted at the collisional
suture zone59–61. Downward extraction of lithospheric fragments
may have caused rapid exhumation of the overriding plate crust
near the suture62,63, which may be partially responsible for the post-
0.5Ma uplift of metamorphosed (Yuli Belt) and unmetamorphosed
(Coastal Range) arc crust in eastern Taiwan (Fig. 4b, c)5,34,64.
Isostatic compensation by erosional unloading may also have
contributed to the creation of topography65,66, but its role remains
unclear. It is possible that we have underestimated post-0.5Ma
long-term uplift rates in the northern Coastal Range, because
present-day topography in the north may currently be influenced
by the modern subsidence stage. This youngest and ongoing
subsidence likely is driven by northward convergence and reversed
subduction polarity of the Philippine Sea plate at the Ryukyu
trench67,68 (Fig. 1).

This study reveals a history of extremely rapid vertical
oscillations (up-and-down cycles) of near-surface rocks in only
~3Myr during active accretion of island arc crust to a growing
continental margin (Fig. 3). Our results highlight the short-lived
episodic nature of arc-continent collision69 and challenge ideas
about long timescales that are often invoked for the rise and fall of
mountainous topography by coupled tectonic and surface

processes (106–107 years)70. We find that growth of topography
to form an eroding steep mountain range directly on the footprint
of a formerly subsiding marine basin can be accomplished in only
~500–800 kyr. This study shows that the change of direction in
vertical motion, and transformation of a subsiding basin to an
eroding mountainous source, can occur very quickly to drive
extremely rapid rock cycling and mixing at this and other
collisional plate boundaries34. Because arc collision and accretion
are recognized as a fundamental process in the growth of
continental crust71, our results suggest that extremely rapid
vertical crustal motions may be characteristic of deformation in
arc-continent suture zones through geologic time72.

Existing methods of thermochronology, petrology, and geo-
chemistry provide a useful record of crustal burial and
exhumation in these settings, but they cannot detect such short
rapid vertical trajectories in shallow unmetamorphosed crust.
Integrated magneto-biostratigraphy and basin subsidence analysis
thus offers an important tool for documenting high-resolution
histories of vertical crustal motions in tectonically active systems.
This approach spans a crucial time gap that needs to be bridged
to better understand dynamic feedbacks among long-term
geologic (tectonic) processes and shorter timescale impacts such
as climate change and landscape response1,70,73.

Methods
Geological mapping and lithostratigraphy. Detailed geological mapping for this
study targeted excellent exposures in road cuts and riverbanks of the Coastal Range
(Fig. 1). Marker beds (pebbly mudstone and tuffaceous turbidite) and fault zones
were carefully mapped across the study area (Supplementary Figs. 3–4). We also
compiled information from previously published geological maps35,74–81. Lithos-
tratigraphic descriptions in type sections of the southern Coastal Range [Bieh river
(BC), Madagida river (MDJ), and Sanshian river (SSS) sections] are from Lai
et al.34 (Supplementary Fig. 1). New results in the northern Coastal Range
[Hsiukuluan river (HKL), Wulou river (WL), Fungfu (FF), and Fungpin (FP)
sections] are compiled in Supplementary Fig. 2. We produced composite columns
for the northern and southern Coastal Range (Fig. 2) through correlations based on
marker beds and the first appearance datums (FAD) of index fossils (Supple-
mentary Figs. 1, 2) and aided by construction of a balanced geological cross-section
(Supplementary Fig. 5). This approach assumes that the thickness (i.e., rock
volume) of each unit does not change substantially across the local structures
(faults and folds).

Magnetostratigraphy. In the southern Coastal Range, we adapted results and
interpretations of paleomagnetic chrons from previous published studies34,42,79,80

(Supplementary Fig. 1). In the northern Coastal Range, we compiled published
paleomagnetism data40,41 along with new data from samples collected in coherent
strata from continuous sections (Paliwan Formation) for Hsiukuluan river (HKL),
Wulou river (WL), and Fungpin (FP) sections, avoiding chaotic mass-transport
deposits (slump beds, olistoliths) (Supplementary Figs. 2–4). Paleomagnetic sam-
ples were collected using a standard (22 mm diameter) drill core from fresh
mudstone exposures, and remanent magnetization was measured with a 2 G three-
axis cryogenic magnetometer. To remove viscous remanent component of over-
printing magnetic signals, we applied stepwise thermal demagnetization (THD,
from room temperature up to 800 °C) or alternating-field demagnetization (AFD,
from 0 up to 80 mT) to most samples. We applied a combination of THD and AFD
(e.g., THD to 360 °C followed by AFD procedure) in cases of some specimens that
became thermally unstable at higher temperatures. Through these procedures, we
obtained reliable measurements of primary remanent component of the paleo-
magnetic declination and inclination from Zijderveld-type diagrams at each site
(Supplementary Fig. 6). We derived mean paleomagnetic directions by restoring
the perturbations of regional folds (bedding dip) (Supplementary Data 1). The age
values and their uncertainty ranges of magnetic reversals follow the most recent
global geomagnetic polarity timescale82,83.

Calcareous nanoplanktons and planktonic foraminifera biostratigraphy. In the
southern Coastal Range, we adapted results and age interpretations from previously
published studies34,42,79,80 (Supplementary Fig. 1). In the northern Coastal Range,
we digitized and manually georeferenced unpublished calcareous nannoplankton
fossil charts (Supplementary Data 2) and sample localities (Supplementary Figs. 3,
4) from original notes and field maps of previous works by W.-R. Chi38,84 (Sup-
plementary Fig. 2). For planktonic foraminifera biostratigraphy, we compiled
published data of index fossils85–88 and collected five new samples in Fungfu (FF)
and Fungpin (FP) sections (Supplementary Figs. 2, 4; Supplementary Data 2).
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Samples were collected from fresh intact exposures of mudstone, and we used
63 μm sieve to extract proper size foraminifera for identification.

Interpretation of depositional ages is based primarily on the first appearance
datum (FAD) for index fossils due to the potential of fossil reworking, which is
commonly reported in turbidite-dominated deposits of the Coastal Range34,38,89

and confirmed by our work. Age values and uncertainties are based on recent
compilations for the Indo-Pacific region90,91 (Fig. 2).

Paleobathymetry. When abundance data of both benthic and planktic for-
aminifera are available, one can empirically estimate the paleobathymetry (W) of
the marine sediment through a regression relating planktic percentage (%Ps) to
modern water depth92,93. The planktic percentage (%Ps) is defined as:

%Ps ¼ 100 � P
PþB� S�O ð1Þ

where P is the number of in situ planktic specimens; B is the number of benthic
specimens; S is the number of stress-marker benthic specimens that are more
sensitive to other environmental factors (e.g., oxygen level) rather than water depth
(in the genera Bolivina, Bulimina, Chilostomella, Fursenkoina, Globobulimina,
Uvigerina s.s.); O is the number of organically cemented benthic specimens and
reworked fossils. Once (%Ps) is calculated, the paleobathymetry (W) can be esti-
mated through this logistic function:

W ¼ exp αþ 1
β ln

%Ps
100�%Ps

� �h i
� 0:1 ð2Þ

where α and β are empirical constants from modern settings. Despite the lack of
modern offshore constraints near Taiwan, we adapted α = 1.45 ± 0.080 and β =
5.23 ± 0.042 (means ± standard errors) regressed from modern analog of 0–4500 m
water depth in subtropical Pacific near New Zealand by Hayward et al.92.

We converted qualitative (in ordinal scale) abundance data of from Chang85–87

(V: > 50 specimens; A: 21-50 specimens; C: 11–20 specimens; F: 6-10 specimens;
R: < 6 specimens;?: unsurely identified; D: reworked fossils) into quantitative (ratio)
scale with ranges of uncertainty (V = 75 ± 25; A = 35 ± 15; C = 15 ± 5; F = 7 ± 3; R
= 3 ± 2;? = 1 ± 1; excluding reworked fossils) to constrain parameters P, B, and S.
Parameter O is assumed to be zero because we have excluded reworked fossils. We
then used Eq. (2) to calculate the paleobathymetry (W) and its uncertainty
(standard error) through Gaussian error propagation at each sample site of
Chang78–80 along studied sections [Fungfu (FF), Fungpin (FP), Bieh river (BC),
Madagida river (MDJ), and Sanshian river (SSS) sections] (Supplementary Data 3).

Fossil abundance data are sometimes absent [e.g., data of Hsiukuluan river (HKL)
and Wulou river (WL) sections from Chang and Chen88] or paleobathymetry cannot
be calculated using the planktic-percentage method (e.g., %Ps = 0 or 100). In these
cases, we used an alternative method from Hohenegger94, which relies solely on the
presence/absence of the benthic species and their modern water depth distributions.
The basic function of this method can be written as

W ¼ ∑
m

n¼1
lndn

�1= ∑
m

n¼1
dn

�1 ð3Þ

where ln and dn are the location parameter (i.e., mean water depth) and its dispersion
(water depth range) of the nth benthic species, respectively; m is the total amount of
benthic species that are considered. This method is based on the idea that species with
narrower present-day depth distribution could yield more information about the
paleobathymetry of the sediment than species adapted to live in a wide range of water
depth. We collected constraints of the minimum and maximum distributed water
depths of different benthic species or genera (ωmin and ωmax respectively) from
publications to date (see cited data in Supplementary Data 3). We then derived the
geometric mean (ln ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωmax � ωmin
p

) and range (dn ¼ ωmax � ωmin) of water depth
for each species or genus, and calculated the paleobathymetry (W) through Eq. (3).
The uncertainty of paleobathymetry (σw) can be estimated as below:

σw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

n¼1
ln �W
� �2

dn
�1= ∑

m

n¼1
dn

�1

r
ð4Þ

Lastly, we projected these sample locations along the composite stratigraphic
columns to determine changes in paleobathymetry through time (Supplementary
Figs. 1, 2, and 7).

Age models and quality of age measurements. Age constraints (paleomagnetic
reversals and first appearance datums of index fossils) and their measured present-
day stratigraphic heights (before correcting effects of compaction) on the com-
posite sections (Fig. 2) are used to conducted linear regressions between thickness
and age (Supplementary Data 4). We visually determine data trends and group data
to be fitted in different regression lines (Fig. 3a). These linear models are then used
to predict (using extrapolation and interpolation) depositional ages of the section
boundaries (base of section, top of preserved section, top of reconstructed section)
and paleobathymetry samples (Supplementary Data 3–4).

The resolution of our dating with these integrated magneto-biostratigraphy
methods is expected to be as good as the precision [~1–15 thousand years (kyr)] of
each astronomically-calibrated age of paleomagnetic reversal83 and first appearance
datum (FAD) for index fossils90, once they are accurately placed in the
stratigraphic sections. The stratigraphic position of each age-control datum was
determined using the two sample sites that define a magnetic polarity reversal or

the first appearance of an index fossil. The stratigraphic thickness between two
bounding paleomagnetic sample sites mostly lies between 8 to 288 m, except a poor
constraint (828 m) at reversal between polarity chrons C2An1.n and C1r.2r (Gauss-
Matuyama boundary) near the base of Fungfu (FF) section in the northern Coastal
Range (Fig. 2; Supplementary Figs. 1, 2). Using the mean sediment-accumulation
rates calculated from height-age linear regressions, the uncertainty (accuracy) for
most of our age measurements is estimated to be ± 2–43 kyr (0.1–2%) from
targeted age values [±~507 kyr (~10%) for the Gauss–Matuyama boundary in the
FF section] (Supplementary Data 4). This demonstrates remarkably high-
resolution and high-fidelity controls on depositional ages and associated vertical
subsidence and uplift rates.

Subsidence analysis: decompaction and backstripping. We used established
numerical methods of basin geohistory analysis45 that correct for loss of pore space
during progressive burial and compaction of sediment through time to reconstruct
of subsidence history of the sedimentary basin. Stratigraphic thickness, corrected
for the effects of compaction and sea level, is therefore used to track the depth of
the basement top through time95. This approach assumes that the pore spaces are
interconnected (i.e., no overpressure), and the sediment porosity [+ðzÞ] varies as
an exponential function of depth (z):

+ zð Þ ¼ + 0ð Þ � e�z=C ð5Þ

where C is a decay constant that varies with lithology. We calculated global average
porosity-depth functions from previous publications95,96 to estimate initial por-
osity [+ 0ð Þ], decay constant (C), and uncertainties (standard errors) for sandy,
muddy, and mean marine sediments (Supplementary Fig. 8; Supplementary
Data 4). We assumed that basement rocks below the basal unconformity (i.e.,
Kangkou Limestone, Tuluanshan Formation) have not compacted. This assump-
tion is supported by the presence of calcite-cemented Miocene volcaniclastic
sandstones beneath the unconformity that are directly overlain by uncemented
mudstones and sandstones above the contact33,34, showing that rocks beneath the
unconformity were cemented prior to deep post-Miocene basin subsidence. Rocks
beneath the unconformity may be subject to minor, inconsiderable amounts of
compaction that do not affect the results of our subsidence analysis.

For N stratigraphic units, the present-day thickness (T0) of each unit was buried
at a depth of D0 when the youngest sediment deposited prior to structural tilting
and erosion. There are 14 preserved units (N = 14) in both northern and southern
Coastal Range. Stratigraphic positions of all age boundaries are presented in
Supplementary Data 4. Uncertainties of T0 of preserved units (unit 1–14) are
limited by the stratal thickness between the two bounding samples that confine the
magnetic reversals or the first appearance datums (FAD) of index fossils
(Supplementary Figs. 1,2; Supplementary Data 4). The uppermost preserved
sediment at the top of unit 1 is consolidated and lithified, which means that there
must have been a considerable thickness of strata (called unit 0 in this study) above
preserved unit 1 that was subsequently removed by erosion during post-0.5 Ma
uplift. Porosity-effective stress of the sandstone44 and compiled vitrinite
reflectance97 data yield an estimated range of eroded thickness of ca. 2.2–3.7 km
above marker bed tuff Tp12 near the top of the Madagida river (MDJ) section
(Supplementary Fig. 1). This implies ca. 0.45–1.95 km sediment that was deposited
above unit 1 and has since been removed. For simplicity, we assumed a
conservative thickness range of 0.75 ± 0.25 km for the unpreserved unit 0 in both
the north and south composite sections, and we used it to reconstruct the top of
section prior to structural inversion (Fig. 3; Supplementary Data 4).

To calculate the thickness of each unit at some earlier time (i.e., decompacted
thickness, Ti), when the unit was buried only to a depth of Di , we can use the mass-
balance equation:

R DiþTi

Di
1�+i zð Þ� �

dz ¼ RD0þT0

D0
1�+i zð Þ� �

dz ð6Þ

where the +i zð Þ is the porosity of unit i (i = 0, 1, 2,…, N) at depth z. This
approach assumes the volume of sediment grains within the unit does not change.
The quantity 1�+i zð Þ� �

represents the volume of sediment grains (per unit
volume of the strata) at any level within the unit. After integrating Eq. (5), Eq. (6) is
rearranged to iteratively solve Ti :

¼)Ti ¼ ∑
M

k¼ 1
Fk
i � φ1 � e�Ti=C

k
i þ φ2

h i
ð7Þ

with
φ1 ¼ �Ck

i �+k
i 0ð Þ � e�Di=C

k
i

φ2 ¼ �φ1 þ T0 þ Ck
i �+k

i 0ð Þ � e�D0=C
k
i � e�D0=C

k
i � 1

h i
(

where Fk
i is the fraction of lithology k (k = 1, 2,…, M) in unit i. There are three

types of lithology (M = 3) determined in this study. The fraction of sand (k = 1),
mud (k = 2), and pebbly mudstone (k = 3) was measured in all sections
(Supplementary Figs. 1, 2; Supplementary Data 4). We assumed that unit 0
contains subequal fractions of sand and mud (F1

0 ¼ 0:5; F2
0 ¼ 0:5; F3

0 ¼ 0). The
initial porosity [+k

i (0)] and decay constant (Ck
i ) for sandy, muddy, and mean

marine sediments were applied respectively (Supplementary Fig. 8). After repeating
Eqs. (6) and (7) for each unit from top to the base of section, we computed the sum
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of decompacted unit thickness (ϵi) at the time when unit i finished deposition:

ϵi ¼ ∑
N

i¼ 0
Ti ð8Þ

These procedures [Eqs. (6–8)] account for the effects of removing incrementally
older units from the top and allow the section to expand as underlying units are
unloaded.

To evaluate the amounts of total subsidence (i.e., the true depth of the
basement, σi) at the end of unit i deposition, we need to correct the magnitude of
paleo-water depth by assuming the basin was filled with water to sea level:

σi ¼ ϵi þWi � Δi ð9Þ
where Wi and Δi are the paleobathymetry and sea level relative to modern datum
at the time of unit i finishing deposition. We combined means and standard errors
of available paleobathymetry estimates (Supplementary Data 3) with reconstructed
global sea level from Miller et al.98 using age constraints in each section (within the
range of age uncertainty with extra ± 0.2 Myr and ± 0.01 Myr for paleobathymetry
and relative sea level respectively) as the values of Wi and Δi at each unit boundary
(Supplementary Fig. 7; Supplementary Data 4). Paleobathymetry constraint was
not available for the reconstructed unit 0 above the preserved strata. In this case, we
assumed the paleobathymetry of reconstructed basin top (at the end of unit 0
deposition, W0) and its uncertainty range as a half of the W1 value at the top of
preserved strata [W0 ¼ W1=2 ±W1=2] because basin inversion in the Coastal
Range possibly began between the ends of unit 1 and unit 0 (Fig. 3; Supplementary
Fig. 7).

Since the folded basal unconformity and underlying volcanic basement rocks
are exposed well above sea level (Fig. 4c), we can calculate the minimum and the
best-estimated long-term rock exhumation rates using the decompacted depth of
basement at depositional ends of unit 1 and unit 0 (σ1 and σ0) to the present-day
elevations of the antiformal peaks in northern and southern Coastal Range
(0–1.33 km and 0–1.68 km, respectively) (Fig. 3).

We further estimated the amount of subsidence that was contributed by
tectonic forces (so-called “tectonic subsidence,” ζ i) at the end of unit i deposition
by removing effects of paleo-water depth and local (Airy) isostatic response to
applied sediment loads:

ζ i ¼ ϵi
ρa� �ρs

ið Þ
ρa�ρwð Þ þWi � Δi

ρa
ρa�ρwð Þ ð10Þ

where ρw is the density of marine water (ρw ¼ 1025 kgm�3); ρa is the density of
asthenospheric mantle (ρa ¼ 3300 kgm�3). �ρs

i is the average (integral) density (�ρs
i)

of the unit i with various lithologies k at each time frame of sedimentation:

�ρs
i ¼ ∑

N

i¼ 0
∑
M

k¼ 1
Fk
i �Ωk

i

	 

=ϵi ð11Þ

Ωk
i represents the average (integral) 1-D mass of unit i for given lithology k at

some earlier time, assuming the pore spaces were filled by marine water,

Ωk
i ¼

R DiþTi

Di
+k

i zð Þ � ρw þ 1�+k
i zð Þ� � � ðρg Þk

n o
dz

¼ ðρg Þk � Ti þ ρw � ðρg Þk
h i

� Ck
i �+k

i 0ð Þ � e�Di=C
k
i � 1� e�Ti=C

k
i

h i ð12Þ

where ðρg Þk represents the averaged density of sediment grain for each lithology k

in unit i. We applied the means and standard errors of the grain densities for sandy,
muddy, and mean marine sediments (for pebbly mudstone) respectively from
previously published data95 (Supplementary Fig. 8; Supplementary Data 4).

Uncertainties of all input parameters were considered in the analysis. Thus, we
were able to estimate the uncertainties of calculated tectonic subsidence (ζ i) and
decompacted total subsidence (σi) through Gaussian error propagation or delta
method (Supplementary Data 4). Throughout the analysis, we found that the
primary source of error is the present-day (non-decompacted) thickness of each
unit (T0), followed by uncertainties in paleobathymetry estimates (Wi).

Lastly, we plotted the subsidence history (i.e., geohistory) diagrams for northern
and southern composite sections, which show changes in depth of basement [i.e.,
decompacted total subsidence (σi)] and calculated corresponding amount of
tectonic subsidence (ζ i) through time (Fig. 3b, c). The amount of total subsidence
prior to decompaction correction was also plotted as a standard convention. The
position of basement top at the beginning of subsidence for each composite section
was reconstructed by projecting along the oldest segment of subsidence curve to the
sea level (0 km). This indicates the end of formation of the basal unconformity6,33,
which is characterized by a broad erosive surface that formed near sea level and is
capped by discontinuous thin (ca. 50–200 m) deposits of shallow-marine limestone
(Kangkou Limestone, from 5.57–4.37 Ma to 4.31–3.47 Ma) and limestone-clast
bearing epiclastic rocks (Biehchi Epiclastic Unit, from 5.53–4.31Ma to
3.82–3.35Ma)34,35 (Supplementary Figs. 1, 2).

Data availability
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